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AB STRACT

An intensive s_udy of the assumed variable

distribution necessary for the Assumed Displacement

Formulation, the Hellinger-Reissner Formulation, and the

Hu-Washizu Formulation is made in a unified manner. With

emphasis on physical explanation, a systematic method for

the Hybrid Stress element construction is outlined. The

numerical examples employ four and eight node plane stress

elements and eight and twenty node solid elements.

Computation cost study indicates that the hybrid stress

element derived using recently developed Uncoupled Stress

Formulation is comparable in CPU time to the Assumed

Displacement element. Overall, main emphasis is placed on

providing a broader understanding of the Hybrid Stress

Formulation.
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I. INTRODUCTION

The Finite Element Method is a numerical method with

firmly established mathematical foundation. Popularized

by the broad applicability, large finite element codes

play a dominant role in the current structural analysis.

Thus, in the past years, intense effort was applied to

improve and optimize the finite element method.

The main thrust of this report is to present an

explanation of the finite element method in the view of

the theory coupled with computational algorythm. The

functionals considered are that of the Hu-Washizu

principle, 7[H w, the Hellinger-Reissner principle, 7_ , and

the principle of minimum potential energy, 7_ . By a

direct comparison of these three functional, the role of

the assumed field variables can be clarified.

Furthermore, through a comparative evaluation, these

theories will be approached in a unified manner.

The motivation came from earlier attempts for the

explanation of the class of elements derived under hybrid

stress method. Several months of numerical and literature

research demanded more systematic method for the research

into the hybrid stress elements, using the latest

development in the hybrid element research, a systematic

method will be constructed step by step starting from the

governing equations of elasticity.



2. GOVERNING EQUATIONS OF ELASTICITY

Since finite element methods in solid continuum

operate on the governing equations of elasticity, several

key observations must be emphasized before introducing the

weak or the variational form of the equations. In this

analysis, only the small displacement theory of elasticity

will be considered. Also, the Rectangular Cartesian

Coordinates will be employed for defining the three

dimensional space.

STRESS

The condition for the stresses are obtained directly

from the Newton's laws of motion pertaining to the bodies

at rest, Joe. the force and moment equilibrium.

Application of these laws on the stress yields the

Equations of Equilibrium for stress.

'_x .;_y _

_-_, * _ * !.%= • Fy = o

_o-,___,.,_o-y.., _._ -,-F_ = 0
•x _X _t

In the matrix form,

D'rO " + F =0

where ,

_T
= Six stress components = t_x_yO'EET_yGyz_xE_

F : Body force components

D = Matrix of differential operators
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Thus, the chosen stress field must satisfy the

pointwise homogeneous equilibrium dictated by the Newton's

laws. This applies to the any

contains stress as explicit

implicitly through the unknown

functional whether it

unknown functions or

displacement functions.

Further discussion is reserved for later sections.

DISPLACEMEtIT

Since the class of elements presented require C °

continuity, the isoparametric formulation is the obvious

choice. These elements will be later refered to as the C °

continuity elements. The procedure in obtaining the

interpolation functions are well outlined in most finite

element reference books, e.g.

the displacements are

[2]. The notation used for

STRAINS

The strains are defined as

_V _vJ

Ex : _3x



"_x - _u + ;)v = ;)_/ + ----

"Yx_ _ _"_

These six independent partial differential equations will

be denoted as the Strain-Displacement Relations.

For the functionals, 7_p and _T_ , where

displacements are included explicitly as unknowns in

formulating the elasticity boundary value problem, no

further conditions are necessary to ensure the existence

of single-valued displacement. However, for _qW' since

the strains are also considered as independent unknowns,

the compatibility conditions must be imposed on the

strain-displacement relation to ensure that the unknown

strains are indeed compatible with the unknown

displacements.

The Compatibility Equations are

= O

•_ty _ _zeL - I E__vl: o

;)_Ex

;)_2. _ =..=" ;_x gZ

- _-'_"z "" a_ _'x _y _ )=o



These equations are known as the Sto-Venant' s

compatibility equations. However the six equations do not

represent six independent conditions. Yet the usual

procedure is to include all six equations in the interior

problem formulation, but to remember that they represent

only three independent conditions [3].

Thus far, all the equations presented are completely

independent of the relationship between stress and strain.

They are applicable to any type of continuous body

undergoing small displacement. However, to predict the

behavior of a structure it is also necessary to know the

components of stress as functions of the components of

strain and vice versa. Through the Stress-Strain Relation

the material properties of the body enter the problem. In

the following development, the materials considered will

be assumed to follow the generalized Hooke's law with 21

independent constants.

The stress-strain relation can be written in a matrix

form as

O" = C E

and C2.s)
£ = 5 c"

where,

-!
5 : C

For this stage the most predominating factor must be



pointed out. This

displacements, and

governing equations.

is simply that the stresses, the

the strains must satisfy these

When the approximate functions are

used to solve these equations, the optimum choice of the

assumed function is the one that satisfy each of these

equations a priori to the highest polynomial order. This

argument can be used to sort through all the admissible

functions in formulating the best general finite element.

Thus, whatever variational functional used to formulate

the element, one must always refer back to the physics of

the problem and not sink into the mathematical generality.

11
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3. VARIATIONAL FUNCTIONALS

Without belaboring on the actual derivation of each

functionals, the main references will be indicated and

only the pertinent information for this discussion will be

outlined. Presentation is organized to clearly indicate

the a priori conditions and the stationary conditions

which provide the Euler equation for each functional.

PRINCIPLE OF MINIMUM POTENTIAL ENERGY, _p (u)

A priori conditions:

a =c_ J
~ = -_ l o. 5.

_ .. _.av -
v

The stationary condition, _p =0 ,yields

DTo " _ F =0 _- V

T :, T on

whe re,

= Strain

= Stress

C = Stress-strain law



= Displacement

= Prescribed displacements

= Prescribed traction

= Body force

V = Volume

5_- Portion of surface

are prescribed

_ = Portion of surface

are prescribed

where displacements

where stresses

In l%p , the

stress-strain relation,

identically satisfied.

and the prescribed

variational

conditions

generalized

sense. By relaxing all three

by using the Lagrange multiplier

functional, _HW' can be obtained.

strain-displacement relation,

and prescribed displacements are

However, the equilibrium condition

tractions are only satisfied in a

a priori

method, the

HU-W_S.XZC PRI,CIPLE. 77.w_._, 2)

A priori conditions: NONE

The

- d,

stationary condition, _HW =0

O'-- CE t

D"ra* F = o

~ 8

i, V

,yields



"r'=_ = T o,_ S m

•Jx : ... I_;rer.'}ion_i Cosines

All governing

variational sense.

generalization is the

G . The

equations are satisfied in a

Yet the price paid for _he

two additional unknowns _ and

Hellinger-Reissner Principle can be easily

obtained by introducing the stress-strain relation.

BELLINGER-REISSNER PRINCIPLE, _ (_, _ )

A priori conditions:

V

s.

The stationary condition, _ =0

_6"_- _" =0

,yields



T = T on _"

- 5

By satisfying the equilibrium equations

_R and 7_HW can be shown to reduce

formulation via Principle of Complementary

identically,

to the Hybrid

Energy [4] .

Yet with availability of isoparametric formulation for C °

continuity elements, the Hybrid elements can be formulated

using 7_ or 7_HW in more expedient manner.

In a recent publication by Plan and Chen [5] , new

formulation for hybrid elements provides a method to

directly take advantage of the sparse nature of matrices

involved in the construction of the hybrid elements.

Briefly, the new formulation introduces an additional

displacement field which act as a Lagrange multiplier on

the homogeneous equilibrium equations. The major

advantages will be described in the later sections. These

new functionals will be refered to as the uncoupled stress

versions.

UNCOUPLED STRESS VERSION OF 7_ AND "_'l.lW

The element

separate parts.

displacement u is divided into two

_ is the usual compatible displacement in terms of the

I0



is the additional internal
nodal displacements • u_

displacement which acts as the Lagrange multiplier for the

homogeneous equilibrium. When this form of displacement

is implemented into the _ and _Hw, Equations (3.7) and

(3.4) , with body force and prescribed traction terms

dropped, the resulting equations are

As a remark on notation, since the hybrid formulation can

be obtained via _-_ or _Hw in both coupled and uncoupled

stress versions, _'H will be used to refer to the general

hybrid element case where the stresses are constrained to

be in equilibrium.

11



4. FIELD VARIABLES and STATEMENT of EQUIVALENCE

The first question that must be answered in any

finite element development is whether the method

converges. The mathematical proof for the convergence of

_-p and _-H are given in the References [6) and [7].

Yet these proofs only justify the use of the finite

element method and not whether it is feasible for

engineering application. The demanding requirement is the

rate of convergence.

The two modes of convergence are the h-convergence,

the diameter of the largest element, h-max, approaches

zero, and the p-convergence, the minumum order of the

polynomial basis functions, p-min, approaches infinity.

The comparison of the rate of convergence between these

two modes for _'p is covered by B ubuska and Szabo [8].

The results given in this article should be clarified in

the view of general purpose elements. First, most

structural problems only require low order polynomial.

Thus the

practical

purpose

lower order

engineering

elements and

elements can be employed for most

problems. Secondly the special

other methods such as the reduced

integration techniques should be considered. The main

reason for the discussion of this article is to point out

that before the general purpose elements can be

constructed, better unified understanding of the special

purpose elements and various other techniques is

12



necessary. As the solution of the

element method becomes more complex, as

crack and composite material analysis,

judgement and experience will not be

determining the accuracy of the solution.

problem by finite

exemplified in

the analyst

adequate in

Another important point that must be defined involves

the past attempts to improve elements based upon 7_p .

The first workable attempt was presented by Wilson [9]

with his incompatible displacement models. Recognizing

the deficiency in the isoparametric displacement elements,

he introduced the bending modes into the element

displacement field. Other trials that falls into this

catagory can be exemplified by the introduction of )_

singularity by distorting the nodes. The second catagory

can be classified into the scheme of reduced integration

technique. This technique works well to prevent locking

in the generalized shell element as well as other

applications. The major point that most researchers in

finite element method ignored is the fact that both

Wilson's incompatible element and the reduced integration

technique result in identical stiffness matrix as the

hybrid formulation. This bold clue that hybrid

formulation can reveal the way to develop the optimal

element has been casually dismissed in view of

computational cost in a premature fashion.

With this emphasis clearly made, a close examination

of the finite element method in a unified manner can be

13



made. First the field variable for each

be listed.

functional will

-/_-p _) displacement

7F R (_,_) displacement, stress

7_S_[e,_,[ ) displacement, stress, strain

The Statement of Equivalence describes that when the

displacement modes from _'? yields the stress and strain

modes for _R and _Mw , the three functionals are

equivalent or identical. To illustrate, take the simplest

case of linear displacement modes. Since this yields

constant stress and strain modes, if _ and _ contains

the constant modes, the three functionals are equivalent

up to a constant stress and strain.

leads to the order of equivalence.

From the consequence of above

inductive reasoning, any class

The argument directly

statement, using the

of problems that have

constant stress of strain will yield the exact solution

using any of the above functionals. Using the Statement

of Equivalence as a benchmark, the examination of each

functionals separately may be continued. As a warning,

the mechanics of construction of the desirable field

variables are left for the later section and should not

enter here as a consideration. This is justifiable since

for clarification purposes, ideal cases may be presented.

14



-- "_p(u)--..

A priori conditions (3.1) imply that the choice of u

automatically determines _ and _ . Under isoparametrlc

formulation, there is no flexibility on the choice of u.

Therefore, further discussion on u is not necessary.

Recall, from the section 2, that the governing

equations are the equilibrium equations

strain-displacement relation (2.3), and the

relation (2.5). Equations (2.3) and

automatically satisfied under the

formulation. However,

applied to the stress

displacement modes is

stress modes are artificially coupled. Artificial in a

sense that one stress component coupling into another in a

way not possible under equilibrium considerations. The

undesirable trait appears as locking for the bending

problem. The solution to bypass this problem is to assume

separate _ and _ with _ satisfying equilibrium, thereby

satisfying all of the governing equations.

(2.1), the

stress-strain

(2.5) are

isoparametric

the equilibrium equations (2. I)

components obtained from the

not satisfied. Furthermore, the

-- TUR(u, _ 7--

Under the governing equations the forces, _ , and the

deflections, _, couple only through the stress-strain

relations. By choosing _ and _ independently, all three

governing equations can be satisfied a priori. Therefore,

15



with u obtained through isoparametric formulation and G"

chosen correctly, an optimal general finite element can be

con struc ted •

In selecting the stress field, two articles provide

means to overcome the preliminary roadblocks. A method to

bypass the zero-energy deformation modes due to the rank

deficiency in the stiffness matrix is outlined by Plan and

Chen_10]. Their method simply matches a stress mode for

each possible strain mode in order to force non-zero

strain energy. This method is easy to apply and provide

effective means to detect and eliminate the troublesome

zero-energy deformation modes.

The second article, by Tong and Plan [7], on the

convergence of the finite element method based on assumed

stress and displacement distribution, outlines the

procedure to gage the accuracy of such an element. In

order to obtain progressively better accuracy, both the

stress and the displacement approximations must be

improved properly and simultaneously. In another words,

the largest error, whether the error is from the u or _ ,

is the error of the finite element approximation.

-- 7V.w_u,_ ,_ _--

The Hu-Washizu principle is a generalized functional

which allows full flexibility on the choice of the assumed

field variables. This is called "generalized" since no a

16



priori assumption is made and thus the governing equations

of elasticity are satisfied as Euler equations of the

functional. Even with the full flexibility, the choice of

the assumed field variables follow the same constraints as

indicated for 7_ K . Although using 7_Hw to obtain a

hybrid element seem a "round-about" way, the reason will

be apparent under computational efficiency dealing with

anisotropic material.

ROLE OF THE LAGRANGE MULTIPLIER

In the finite element method, the Lagrange multiplier

relaxes the corresponding governing equation. Thus, the

resulting functional becomes more flexible for the

implementation of the desired element properties. From

the view of understanding the mechanics of the finite

element method, the Lagrange multiplier decouples the role

of the assumed variables. From the view of computational

algorythm, the Lagrange multiplier introduces flexibility

needed to reduce computational cost. By decoupling the

assumed variables, algorythms can be implemented to take

full advantage of the sparse nature of the necessary

matrices for element generation.

Even with added flexibility, emphasis must be made on

a simple knowledge that for a given well posed boundary

condition, the governing equations of elasticity has a

17



unique solution. Thus restriction depends on whether the

element is general purpose or special purpose element.

18



5. GENERAL PURPOSE FINITE ELEMENTS

The key to constructing the general purpose finite

element is the actual understanding of each element in

both mathematical and physical sense. In the early stages

of hybrid element research, Irons provided a strong

physical insight in the process of the development of an

assumed stress version of the Wilson's incompatible 8-node

isoparametric brick element [11]. He obtained the correct

stress parameters by simply choosing the modes that

describes physical states of the classic problems. For

example, the pure bending modes should be included in the

stress field, whereas other terms that contribute to the

spurious strain energy should be excluded. As Irons

pointed out, the isoparametric element prevents the need

for engineering insight. Both the researchers and

analysts must recognize the limitations of each element

which is clearly provided in the development process of

hybrid/mixed formulations. The closed minded approach of

using the simplest functional, "/_p , and ignoring the rest

will hinder the progress. Recognize that the construction

of isoparametric element is simple because the steps allow

no flexibility and thus faced with its full limitations.

Falling back on the Statement of Equivalence, any

desired element characteristics, when proven to exist in

_? formulation can be reproduced in the other

functionals. Since the Wilson's incompatible element and

19



the reduced integration scheme can produce pure bending

modes, these desired characteristics can be reproduced

using "/_R or _w° The difference lies in the algorythm

used for the construction of each element.

Thus far since only the C ° continuity elements were

considered, the time is ripe for the discussion of the

elements requiring C i continuity as later referred to as

C i continuity elements. Since the original application of

the hybrid formulation was intended for the C a continuity

elements using the modified complementary energy principle

[12], this discussion inevitably follows.

First recall that the primary reason for the

derivation of the beam, plate, and shell theories were to

simplify the analysis in order to obtain an analytical

solution. Each theory is based Upon the assumption that

one or more dimensions of the problem collapses. To

illustrate, the governing equations can be

non-dimensionalized using a characteristic dimensions of

the problem. As one of the dimensions collapses, for

example the thickness, the equations can be expanded into

a perturbation series. Thus, the structural theories are

basically the leading order, or the zeroeth order,

equation of the governing partial differential equations.

As the perturbation parameter increases, the accuracy of

the leading order equation diminishes. In order to

improve the range of validity of the approximation, later

works introduced the transverse shear effect as

20



exemplified by the Mindlin plate theory. Although the

attempt will not be made here, the transverse shear effect

probably is the first order correction of the perturbation

expansion.

The price paid for the simplification made by the

structural theory is the requirement for C I continuity in

the finite element analysis. Even to this day the

agreement whether this price is justified in the finite

element analysis has not been reached. However, the

degenerated plate and shell el_ment is gaining popularity

for the practical applications. Note that the degenerated

element class only require C ° continuity for the

displacements.

In the article by Bathe and Bolourchi [13] , an

extensive coverage of the degenerated plate and shell

element using "_'p formulation has been made. The

numerical examples given indicated that the best solution

is obtained by using the selective, or reduced,

integration technique. Thus by using the hybrid

formulation the results obtained through reduced

integration can be identically reproduced.

The major advantage of the C I continuity elements is

the ability to represent the bending behavior. If the C °

continuity element can represent the bending behavior,

then the general purpose finite element can indeed be

constructed. The line of research along this path using

_p formulation has been hindered through the difficulty

21



arising with the locking problem.

by artificial

isoparametric

problem can

formulation.

implemented

Since locking is caused

coupling that is inherent in the

assumed displacement formulation, the

be easily remedied by the use of the hybrid

Furthermore, the bending modes can be

even in the linear hybrid elements. Then the

only limitation on using a solid element

example, the thin plate behavior is

stability. By using high enough decimal

limitation can be avoided.

to model, for

the numerical

precision this

22



6. SYMMETRY AND RELAXATION

AS numerically demonstrated by Plan, Chen, and Kang

[14], the symmetry condition is an important criterion

that must be considered in obtaining the assumed field

variable distribution. This is physically consistant

since the finite element should be symmetric in all three

directions. For example, when choosing the stress modes,

bending behavior in _ all three coordinates should be

represented. This criterion is invaluable tool for the

solid element construction.

Before the relaxation condition can be described, a

better understanding of the zero-energy deformation mode

(ZEDM) is in order. Although mathematically ZEDM is a

rank deficiency beyond the rigid body modes in the

stiffness matrix and its prevention outlined in the

reference [_0] , more physical explanation is necessary.

In the case of solid elements, each node contains three

independent displacements, u, v, and w, to describe all

possible motions of the node. Wlth all the element nodes

moving in conjunction, all possible deflection modes can

be determined. For most of these deflection modes

physical significance can be attached such as pure

tension, shear, or bending. For the rest, no such

physical association can be made. Granted each material

point has three degrees of freedom, but that point cannot

be considered as an isolated particle in free space. A

23



continuum collection of material particles has

physical deformation restrictions. The

physical association arise strictly

mathematical modeling process.

Whether the deflection mode has

significance or not, the corresponding

stress mode must be provided in order to

additional

modes with no

through the

a physical

non-orthogonal

prevent ZEDM.

Non-orthogonality of the modes guarantee non-zero strain

energy. Therefore by identification of all the deflection

modes, ZEDM's can be easily eliminated.

As a classic example of the duality principle, a

parallel analogy is presented by Loikkanen [15] using the

stress modes. In the article, he nicknamed the "nonsense"

stresses refering to the stress modes with no physical

association. However, for the purposes of generalization

for the higher order elements, the use of deflection modes

will be more convenient since through the isoparametric

formulation the deflection modes are given and the stress

modes yet to be determined. Note that any non-orthogonal

stress mode can be used even though the lowest order mode

is preferred for the numerical integration considerations.

Figure 6.1 pictorially summarizes the above discussion.

For continuum problems, a complex combination of forces

required to excite such an element deflection within a

mesh arises only for the occasion when the mesh

too coarse.

From here on, the "nonsense" stress mode

is much

refers to

24



any stress mode with only general non-orthogonality

restrictions used in conjunction with the deflection modes

with no physical association. With this in mind the

relaxation condition can be simply stated. For the

"nonsense" stress mode and the corresponding deflection

mode, the governing equations can be relaxed without loss

of accuracy of the element. In the practical application

of the above statement, in _'_ the equilibrium condition

can be relaxed for the "nonsense" stress modes and in 7r_w

the stress-strain relation can

Surprisingly large computational

using the relaxation condition.

also be relaxed.

costs can be saved by

In addition, more

accurate solution can be achieved by eliminating all the

supporting terms necessary to keep these "nonsense" stress

modes in equilibrium.

25



7. FINITE ELEMENT METHOD

For the finite element method presented below, only a

single element domain is under consideration for each of

the functionals.

7.1 PRINCIPLE OF MINIMUM POTENTIAL ENERGY, _F (u)

In using the principle of minimum potential energy to

formulate

functional

V

the element stiffness matrix the following

-_p for an element should be stationary,

In the matrix form,

where

K = Stiffness matrix

= Nodal displacement

= Load matrix

Furthermore,

: I 8T

0

C7. )

The relations used above are

26



u=N_~ C_,.3)

where

= Interpolation matrix

p = Derivative matrix

B = Strain-displacement matrix

27



7.2 HELLINGER-REISSNER PRINCIPLE, 7_R(_, _ )

For the Hellinger-Reissner principle, the following

functional -_'_ for an element should be stationary,

5.

C3 )

In the matrix form, assuming u=5_ on S_ ,

where

a = N_

and

V'

P

f

ds

C7._)

The matrix, _, contains the internal stress modes and

is the corresponding unknown coefficients. In order to

obtain the standard stiffness matrix form, use the

stationary condition on Equation (7.4) with respect to _ .

28



J = H/C - =o

or

-!

Substituting back into Equation (7.4) yields the

fo rm

familiar

where,

In order to obtain the stiffness matrix, Equation

(7.9), H matrix must be inverted. The order of H matrix

is the number of stress parameters, p 's, used for the

element development. The condition for the existence of

the solution for _ 's is given in the reference [7] . Let

m equal to the number of _ 's, k equal to the number of

element degrees of freedom, and 1 equal to the number of

rigid body modes. Then this condition is simply that

m _ k-l. Therefore, since the order of the _ matrix is

(mBm), the minimum possible m is k-l. Since the number of

algebraic steps required for the inversion is on the order

of m $, the computational cost for generating the stiffness

matrix can be significantly more than that for the -_'p

element stiffness matrix.

29



7.3 HU-WASHIZU PRINCIPLE, _Hw(U, _ , _E )

For the Hu-Washizu principle,

-_-Hw should be stationary,

Mw V _ -

V

following

u

functional

In the matrix form, assuming u=_ on S
mh

- QTt

where

-_: CF_

E = p_

and

- I _':- P- av
y

PTBG = ctV

Q

30



With the assumption that the material behaves according to

the generalized Hooke's law, the use of same modes for

both stress and strain is consistent since strain is a

linear combination of stress and vice versa. However the

major deficiency in using 7_Mw formulation in this form is

that both the stress equilibrium condition and the

stress-strain relation cannot be enforced a priori for the

physically significant modes.

Using the stationary condition with respect to _ and

%_.w "0

(7.13)

%_.w = -H= e Gt = o

a_ 4~

or

: H-' ¢: f'

-!

Substituting back into Equation (7.10) yields

w z _ C"r.,5)

where

K = G rH -'7 H"G
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7,4 UNCOUPLED STRESS VERSION OF -_'R AND _w

As given by Plan and Chen[5] uncoupled stress version

of _'R with additional Lagrange multipliers u_ is

In the matrix form,

I

where

I,I = Uf ÷ /._3_

U._ = m'l A

_)T = Homogeneous equilibrium operator

and

V

I pT
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Using the stationary condition with respect to _ and __ ,

or

=0

H -!

(7._o)

(.7. _I)

Combining,

where

(7.22.)

(7.23)

The resulting stiffness matrix is

H g (7. 24-)

Although a_ a first glance the uncoupled stress

version of -T_ seems overly complex, this functional

elegantly takes a full advantage of the sparse nature of

each matrices. Observe that the necessary bulk matrix

multiplication, Equation (7.23) , is performed only once.

this formulation
• With an appropriate choice of u A '

becomes identical to the standard 7_ , Equation (3.7) .

More careful examination of the mechanics of the element
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construction is worthwhile at this point.

Since the equilibrium condition is

the use of the Lagrange multiplier

components are uncoupled.

imposed through

the stressu

_x

d

o

O

For the reasons of computational efficiency, -_'R should

be only used for the isotropic material. For the

anisotropic material, the uncoupled _ will be much more

efficient.

From the Equations (7.24) and (7.23), to generate the

stiffness matrix H_ and (R_'R)_ matrices must be inverted.

First examine the H matrix for the isotropic material.

Define

After algebraic manipulation, from Equation (7.19)
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-' E
H -

assuming

m

-I -- °I --

--'_ -- -I 0

P, j P, ~

Thus the order of inversion is drastically reduced. The

choice of setting Pa =Pz=P_ instead of equating all six P.

is induced by the necessary inversion of (R_H"R) matrix.

The order of {R_H'IR) matrix is determined by the required

number of _'s, Equation (7.18), to impose

condition. The number of _'s required can be

by imposing equilibrium on the stress

counting the number of constraints on the

the tradeoff is that if all

number of _'s will increase

The reduction of the

six P.'s are

drastically.

equilibrium

determined

components and

's. Therefore

equated, the

inversion order of H matrix

solves the question of the high computational cost using

hybrid elements. An additional flexibility in the

uncoupled stress formulation provides more versatile

element. When the element is skewed the displacement

modes becomes correspondingly skewed in the rectangular

Cartesian coordinates. In order to exactly match these
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skewed modes, the assumed stress modes should also be

defined in the natural coodinate system. The uncoupled

stress formulation provide this flexibility.

In order to establish the mechanics to assume the

stress modes in the natural coordinates, further

explanation of the R matrix, Equation (7.19), is needed.

The stationary condition, Equation (7.20} , and the

Equation (7.19) provide two possible ways to obtain the

matrix.

V

Using Equation (7.20) the

through the homogeneous

directly imposed if the stresses

rectangular Cartesian coordinates.

case simply zero or couple the

assuming _ and u A modes in natural

Equation (7. 19) , similar type of

imposed•

constraints on the _' s obtained

equilibrium equations can be

are defined in the

The R matrix in this

appropriate _' s• By

coordinates and using

constraints can be

For the Hu-Washizu formulation,
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In the matrix form,

C'7. z._')

where

E= Po_

and

= I_E'_ _v

Using the stationary condition,

_'n'H....___N: __,. + Of-R;_ =0

=0
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-- - --_ = o

or

: _-'[ _ - _]

- -, (zszb

: A _ T "_:r H _'

Define,

The resulting stiffness matrix is

-- T -- (7.3s)

Since the Hu-Washizu formulation relaxes the

stress-strain relation, further constraints on the choice

of the P matrix must be established. These constraints

arise due to the assumption that

z:f4~

Define P as
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For the anisotropic material law, in order to obtain

G = c£ 62. s)

exactly, the P matrix has to be chosen such that

For the orthotropic case, only P ,Pz,P_ must be equal to

each other. To satisfy the pointwise equilibrium, the

procedure used for 7_ R also applies to this functional.

When the matrices required to generate the stiffness

matrix for the uncoupled stress _-_ and 7_ , the

equivalence condition for the two functionals are observed

to be

_ -! -I _1
w : H : H

At this point, the purpose in exploring the Hu-Washizu

principle can be easily demonstrated. The most

significant difference between the finite element

formulation using -_ and _ arises for the anisotropic

material. To illustrate, for a 20-node solid element, the

minimum number of _ 's is 54. In order to satisfy the
I
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requirement that all P. are equal, 120 _'s (full cubic)

are required. To apply equilibrium and reduce this to 54

_' s, 66 _'s are necessary.

-i
Thus the order of (R 7 H-'R )

required for the stiffness matrix is 66. This defeats the

purpose of using the uncoupled stress approach.

In the Hu-Washizu formulation, the stress-strain

relation can be relaxed for the "nonsense" stress terms

analogous to relaxed equilibrium condition for 7_ .

Thus, the stress-strain parameters P. can be assumed to be
_L

only identical up to a chosen order. Furthermore,

different P.'s can be used since _ is in a diagonal form.

-- -I
H

_ oi

_?,, O

O

-it

733

~44
t

_7.3_

where

By also relaxing equilibrium

terms,

reduced •

section •

for the "nonsense" stress

the total number of ?'s required can be greatly

A numerical example is provided in the later

4O



8. ELEMENTS

8. I 4-NODE LINEAR PLANE ELEMENTS

÷ 3
q

ISOPARAMETRIC ASSUMED DISPLACEMENT ELEMENT

Interpolation functions for 4-node plane elements are

• the
By expanding the interpolation functions N ,

displacement modes can be obtained. The coefficients of

each mode is denoted _..

Without

has one-to-one

element with

respectively.

loss of generality, since isoparametric mapping

correspondence, consider a rectangular

x and y correspond to _ and _ ,

Using the strain-displacement relation, the
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strain modes corresponding to Equation (8.2) are

Isolating each strain modes,

_'x : ¢(Z I ELOW_AT/0N

Ey= _7 J

_x 7 : 0< 3 f o( 6 ] DlSTOR'rloN

Ex - _4 Y 6x - O

Zy = 0 fy = o<lr X

The two modes indicated in Equation (8.6) demonstrate the

artificial coupling inherent in the isoparametric

formulation. This coupling nature is the reason why 7_p

elements handles the pure bending poorly. In pure bending

the shear term approaches zero as the thickness

diminishes. The two modes in Equation (8.6) with the same

coefficient must increment both normal and shear strains

simul ta neo usly.

WILSON' S INCOMPATIBLE ELEMENT

Wilson's incompatible displacement fields for 4-node

plane element are
42



The four additional terms are the incompatible

displacement terms to represent the bending behavior. The

analysis of this element follows the same procedure.

Ex = o_:_ ,, cx4y -ZA, x.

X

By redefining the coefficients in Equation (8.8) as

the strain modes can be isolated. Upon substitution,

_x : _<a.+.A.,y + zA3y-_.A,x

__y : =? ,.A.=x + £>=x- £A4y

Although the bending behavior is retained in the Wilson's

incompatible element by the added _and _ modes, the

element fails the patch test unless the shape of the

element is rectangular[t1].
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HYBRID ELEMENT

A demonstration of constructing the uncoupled stress

_-R and 7_NW elements is left for more general solid

element discussion. For the

hybrid elements constructed

illustrated.

plane elements, only the

using the standard 7_ are

To eliminate the zero-energy deformation modes, the

strain modes obtained from the displacement modes,

Equation (8.3), provides a convenient method. Each strain

mode must be matched with stress mode to form non-zero

energy. The technique is to first eliminate artificial

coupling by using additional _'s in the matching process.

Thus Equation (8.3) forms

F,

Other modes, such as _ =x and _y -y, are not

considered since they introduce additional error. Since

these modes are not present in the strain modes, they

interact with all the non-orthogonal terms in the element

energy integral an_ thus introducing

error. To illustrate, if the mode

equilibrium condition requires that

coupling arise when _y = -_ry

Equation (8.3) .

bending behavior.

Thus the shear

44

artificial coupling

= _EX is included

o',:y :, -Pt Y" The

interact with c_+ mode in

again couple into the



Applying the equilibrium condition on Equation (8.11)

yields the optimal assumed stress modes.

ITxy = pl

Since these stress modes are not invariant with respect to

the reference coordinates, local axes should be used.

Forcing invariance through the use of complete

polynomial[16] diminishes the true advantage of the hybrid

formulation for the general purpose elements.

At this stage the reason why the selective

integration technique and the Wilson' s incompatible

element reduce to hybrid element for the rectangular

geometry is clear. In the selective integration

technique, by using lower order integration for _y in

Equation (8.3), the shear strain reduces to _y= o(3+ _ _ ,

thereby retaining the pure bending behavior. Also for t_e

Wilson' s element in rectangular geometry, the

contributions from A 3 and A z support the pure bending

behavior exactly. Furthermore , since unique solution

exists for the governing equations of elasticity, the

stiffness matrix must be identical for all these cases.
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8.2 8.NODE UADRATIC PLANE ELEMENTS

5

ISOPARAMETRIC ASSUMED DISPLACEMENT ELEMENT

For the 8-node plane element,

C__ _'_'_)( _÷ _ _"D¢3'_'_'+"h't -_'_

= -_ ¢1-T_)Ct+'Ti't)
_.= f, 7

;= (>,8

The displacement modes are

The strain modes,
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*- (::Zol 8 * 2.=<,s)×y * °<'rxZ ÷ o_ 7z

From here on the purpose for the isolation of the strain

modes is to systematically construct the hybrid elements.

HYBRID ELEMENT

Following the procedure described previously for the

linear elements, return to Equation (8. 15) and eliminate

artificial coupling and redundancy.

= _- + t"/'_1tI

The equilibrium equation yields following

the _ ' s

IZ = O

P',, + =_,s : o

constraints on

(._.J7)

Applying the constraints and shifting

numbers yields following stress modes.

the coefficient
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Since a minimum of 13 _'s

solution and thus eliminate the

modes, two extra stress modes have

Equation (8. 18) . Furthermore,

element, the two extra modes serve

the elimination of zero-energy

before, the two modes are classified

stress modes. With this in mind, all

by the

"nonsense" stress

Two possible

integration and

formulation, are

are required to obtain unique

zero-energy deformation

be included in the

the general purpose

to

for

no purpose other than

deformation modes. As

as the "nonsense"

governing equations can be

modes without loss

candidates, in

application of

constraints imposed

relaxed for the

of accuracy.

view of

uncoupled

numerical

stress

These modes interact with

energy. For more in

reference[10] .

Ea=x and Ey-y to form non-zero

depth coverage refer to the
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8.3 8-NODE LINEAR SOLID ELEMENTS

2 3

ISOPARAMETRIC ASSUMED DISPLACEMENT ELEMENT

For the 8-node solid element,

i = I,Z,..., 8

The displacement modes are

The strain modes,

(_'. zo}
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HYBRID ELEMENT

First eliminate the artificial

equation (8.20).

coupling in the

From equilibrium,

_l& + (_t'1| = 0

/'_ + #'7:0

/,_:_ :#z3 =/Z_r :/_.l.S" =/-Z, =#:7 =D

Applying these constraints,
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three dimensionality

an additional step must

final stress modes.

with

From the of the element

construction, be performed before

arriving at the By comparing the

Equation (8.23) the Equation (8.20), the modes :q,

_, and :2,1 above are not represented as a possible

deformation under the isoparametric formulation. Thus,

these three additional _' s must be set to zero. Note that

through the process of eliminating the artificial coupling

in the Equation (8 .21 ) , additional possible modes under

equilibrium are introduced. These _'s do not contribute

in accordance with the deformation modes and thus should

be left out.

The resulting stress modes are

:, t :_ x -,:,_y + :,,xy (_._-_
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Recall from the Section 6 and the Figure 6.1 that _, Fl 7 ,

and pie are "nonsense" stress modes and the governing

equations can be relaxed for these terms.

UNCOUPLED STRESS HYBRID ELEMENT

for computationally

material property.

In order to achieve fully equivalent element as the

previous hybrid element with stress assumption in Equation

(8.24) following uncoupled stress assumption must be used

efficient element with isotropic

o"_,_= f_4 -t,B,sx

" ,e,__y * f,s y_ *F,...x,

(.g.:ts')

$2



Proper _' s can be eliminated or

choosing the R matrix according to

coupled directly by

The order of R matrix for the above stress assumption is

number of _ ' s by 9. Thus additional inversion of (9_9)

matrix (RTH"R) will be required.

In the natural coordinate system of the element, the

stress assumption corresponding to Equation (8.25) is

with _A as

Note that if the element is rectangular, above stress

assumption reduces equivalently to Equation (8.33) since

the Jacobian is constant.

A large reduction in computional cost can be induced

by recognizing that the quadratic terms are the "nonsense"

stress modes and serve only to suppress the zero-energy

deformation modes. With this in mind a resulting stress
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assumption arrived is given below.

% =:,,+:,, (_'. _)

With

_l = A z

_F_ - A3

Thus the order of (RTH'tR) is reduced to (3x3) and the

order of other matrices necessary for. the stiffness matrix

generation have been correspondingly reduced.

---- 7_.w --

Recall that for

order for

the anisotropic material law, in

: C £ (2.s')

the constraints on _ and E are

o-'=.._£
E = Pot
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A promising choice under this constraint for the stress

assumption is

-+/_-(;sG +7F -'-_;)

-+/_,oCI"j ,'1[, _'I)

•+/,s C_7 +'TP+ _'.[)

+p=,<>CI,7+,_ + fT$

+/_,-.,f _'7+7]"+_'.e)
' P'° (_'7 "+'Tr+ 71")

However, since the stress distribution in Equation (8.30}

may be too rigid, additional relaxation of the governing

equations may be necessary.
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8.4 20-NODE QUADRATIC SOLID ELEMENTS

i$

$

,,Z,
/ ,

I
0u"

/

I •

;Z oo

t6 8

$

ISOPARAMETRIC ASSUMED DISPLACEMENT ELEMENT

For 20-node solid elements,

_- ,_(l- 7

C_. 3t)

L-'/,a .-.,It

i : 9, '5 _-Lts

-,o1,2,,¢i,I

The displacement modes are

"-: "(, "", } + °%'9+ % T " °t, _:7 ""<, ? ]" "" at7TY *% _'".-'_._ 7 _"_,._" _

f.g. =z)

_¢: sv,,, ... * sol°T_7

The breakdown of the

included in the Appendix

corresponding

A.

56
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HYBRID ELEMENT

The procedure for the 20-node solid hybrid element

development is similar to 8-node solid hybrid element.

The stress modes are given in the Appendix A. In the

final resulting assumed stress modes, Table A4, the

"nonsense" modes include all cubic stress terms. This is

consistent with the linear 8-node solid element where all

quadratic terms are the "nonsense" modes. Furthermore,

this is mathematically consistent since with quadratic

displacement assumption, cubic stress modes does not

contribute to general convergence of the element. Recall

that both the stress and the displacement approximations

must be improved properly and simultaneously. Since the

accuracy of stresses from the displacements converge, at

best, in a quadratic order (Optimal Gauss Points[17] ) , the

cubic terms are only used for suppressing the zero-energy

deformation modes.
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9. NUMERICAL EXAMPLES

The element nomenclature is given in the Appendix B

for quick reference. In order to numerically support the

discussion in the previous sections, various samples of

stress assumptions have been implemented. However, bear

in mind that most of the numerical examples given are

carried out to provide a foundation for the inductive

process used in the previous sections.

All calculations for the numerical examples are done

under double precision using Digital Vax 11/780 computer.

The Gaus sian quadrature order used for the numerical

integration correspond to exact integration for each

element type.
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9.1 CANTILEVER BEAM USING SINGLE 4-NODE PLANE

STRESS ELEMENT

Refer to the Figure 9.1 for the problem description

and geometry. The cantilever beam problem has been chosen

to depict the bending behavior. Since the purpose for

this example is to illustrate the nature of the

interaction of the stress modes, only single element mesh

is needed. The Poisson' s ratio has been set to zero to

isolate the modes. The analytical solution is based upon

the Bernoulli beam theory. The tip deflection and the

maximum normal stress, _ , for the five different stress

assumption is given in the Table 9.1.

TABLE 9 I. Cantilever beam using Single 4-node element.

ELEMENT

RP4A 5/D, s

RP4B 5 #'s

RP4C 7P's

RP4D 9¥s

RP4E 5P's

DP4 (_'r)

,,,I,111

.015

•OOl 2

•OOl l

•OOl 1

•0012

•0011

(_M4X

3000

0

226.3

222.2

0

222.2

Analytical .Ol5 3000

The non-zero _' s for each stress assumptions for

cantilever beam bending are listed below.

the
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_P4B

or.-p, .,_.,y

(_xy= O

'_-o
a'_:o

P_P4C ¢_: P3, P7Y

_= #, +p,'l
RP_.D o"_,: o

e._,:. _., ,-prx

a',= 0
RP_-F.. _ : pz _"Ps Y

%= #_ -psx

Note that only in the Element RP4A the pure bending

behavior is exactly modeled. Thus even in a complex mesh

model , the transmitted bending load to each element is

successfully modeled by the Element RP4A. In any complex

loading problem the bending load will be present for many

elements.

The reason for the choice of other stress assumptions

are as follows:

RP4B - 5# case with zero-energy deformat_ion mode

suppressed.

RP4C - Complete linear stress assumption with

equilibrium condition imposed.
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RP4D - Complete linear stress assumption.

RP4E - Alternate 5_ case with equilibrium satisfied

As indicated by the results, if the corresponding stress

modes are available, the interaction between the stress

and strain modes will reintroduce the artificial coupling.

By using the minimum required number of _' s, 5 in this

case, and choosing the stress modes in full recognition of

the strain modes, above interaction can be avoided.

The nature of the stiffness matrices for a square

element can be summarized by the examination of the trace.

TABLE 9.2. Trace of the stiffness matrix.

ELEMENT

RP4A

RP4B

RP4C

RP4D

RP4E

DP4 ('Kr)

Trace = Z Eigenvalues

@
.3634 x lO

.3223

.3727

.3956

.3152

.4615

The Element RP4E is most flexible element in sum, yet this

flexibility does not extend to the bending behavior.
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9.2 CANTILEVER BEAM USING SINGLE 8-NODE PLANE

_T_ESS ELEMENT

Identical problem shown in the Figure 9.1 is solved

using single 8-node plane stress element. Recall that

during the process of the derivation of the hybrid 8-node

plane element, the strain modes from the displacement

modes, Equation (8.15) , has been shown to contain the

bending modes, o44 and C(_l. Thus any stress assumption with

bending modes must give exact solution. The tip

deflection results are given in the Table 9.3.

TABLE 9.3. Tip deflection - Cantilever Beam Problem.

ELEMENT 06'TIP.

DP8

RP8A

RP8B

RP8C

RP8D

RP8E

RP8F

Analytical

.0137

.015

.015

•015

.015

•015

.015

.015

The assumed displacement element, DP8, did not give the

exact solution due to the interaction of _ and _15 term in

the Equation (8.15). As a point of interest, the trace of

the stiffness matrix from the Elements RP8E and RP8F is

identical. 62



9.3 CURVED CANTILEVER BEAM USING 8-NODE PLANE

STRESS ELEMENT

The curved cantilever beam problem, Figure 9.2, has

been motivated by Spilker,Maskeri, and Kania[16]. In the

article, to achieve invariance under coordinate rotation

the stress modes are expanded to full cubic. In order to

further reduce the number of p ' s, the compatibility

condition is imposed on the stress. In Appendix B, this

element is named RP8D. The Elements DPS, RP8A, RP8B, and

RP8C are used for comparison.

The tip deflection results are shown in the Figure

9.3. The analytical solution has been obtained from

Timoshenko and Goodier[18]. Note that this solution is

approximate and thus the percent error only has an

approximate meaning.

The stress results for the five element mesh are

plotted on the Figure 9.4. The results are obtained at

various angles for r=11.58. Specifically, these points

correspond to the optimal stress points. Since the stress

distrlbutions obtained from the Elements RP8A, RPSB, and

RP8C are close, only the RP8A stress distribution is

shown.

Overall results indicate that the Hybrid formulation

converges much faster then the assumed displacement

formulation in the curved beam analysis. However, between

the Hybrid elements there is no consistant way to evaluate
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which element has the best result. To eliminate the

occillation of the Element RP8A stress distribution two

additional analyis should be made.

I) Use local coordinate for RP8A, RP8B, RP8C Elements.

2) Develop an element using the natural coordinate

system for the stress modes.
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9.4 CANTILEVER BEAM USING 8-NODE SOLID ELEMENT

Load Case I, and a

considered. The

Bernoulli beam theory. The tip

given in the Tables 9.4 and 9.5.

In a rectangular solid mesh

The cantilevered beam problem, Figure 9.5, is solved

using several mesh arrangements, Figure 9.6. A moment,

shear, Load Case II, loading s are

analytical solution is based upon the

deflection results are

configuration, the tip

deflection results demonstrate that the Elements RUS8A and

RUS8B contains the pure bending modes induced by the

moment couple in the Load Case I. As expected, the

results from the Elements RUS8D and RUS8E are similar to

the result from the assumed displacement element DS8.

This is a further evidence that inclusion of unnecessary

_'s simply reduces the hybrid element behavior similar to

the assumed displacement element.

In order to assess the rate of degredation of

accuracy as the elements are skewed, the cantilevered beam

problem is repeated by steadily increasing the distortion.

The result from the distortion sensitivity analysis of the

hybrid element, RUS8A, is plotted on the Figure 9.7. As

shown, the Element RUS8A has a high degredation rate

initially and then effectively reduces to zero after b/a =

2. An interesting point to consider is that the value of

the tip deflection beyond b/a = 2 is approximately the

same as the result obtained from the assumed displacement
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TABLE 9.4. Tip Deflection

LOAD CASE I

ELEMENT MESH1 MESH2 MESH3 MESH4 MESH5

DS8

RUS8A

RUS8B

RUS8D

RUS8E

Analytical

9.00

i00

i00

9.26

9.26

i00

27.78

i00

i00

30.2

30.2

I00

20.27

51.1

51.1

22.5

22.5

i00

23.52

46.0

43.5

23.0

23.3

i00

18.81

25.8

25.8

16.6

16.7

I00

LOAD CASE II

ELEMENT

DS8

RUS8A

RUS8B

RUS8D

RUS8E

Analytical

MESH1

9.26

77.5

77.5

9.44

9.44

I00

MESH2

28.50

96.0

96.0

30.8

30.8

100

MESH3

22.81

58.9

58.9

23.8

23.8

i00

MESH4

24.08

55.2

53.3

25.4

25.7

i00

MESH5

20.77

40.1

40.1

20.8

20.9

I00
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element, DS8. Basically, the distortion reintroduces the

artificial coupling into the stress modes, This

observation provides a clue to develop a more effective

element with less sensitivity to distortion. The tip

deflection result for b/a = 99 is 34.9 which further

supports that the accuracy of the hybrid element will be

equal or greater then the assumed displacement element no

matter how large the distortion becomes for the

cantilevered beam problem.

Backtracking for a moment, re-examine the Table 9.4

and 9.5 comparing the Elements RUS8A and RUS8B. Recall

that these two elements employ similar assumed stress

modes. Only difference being that one uses the xyz

coordinates and the other the natural coordinates. The

comparison of these elements indicate further modification

is necessary to achieve distortion insensitive element

then just expressing the stress modes in the natural

coordinate system. Above remark seems reasonable since

the mapping a linear mode from xyz coordinate to the

natural coordinate system yields also a linear mode. As a

point for future research, the mechanics of distortion

should be studied in view of the

stress modes.

In any structural problems, a

system must be defined to locate

volumetric space.

solution response

coupling between the

reference coordinate

each point in the

Thus next step of analysis studies the

of the cantilever beam problem under
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concentrated tip load as

rotated.

RUS8A and

invariance

the

Since the

RUS8B are

condition

reference coordinates are

stress assumption for the Elements

not a complete polynomial, the

is not automatically satisfied.

Before presenting the results, none that an alternate way

to establish the reference coordinate invariance is to use

a local coordinate system for each element.

The results from the rotation of the reference frame

is shown in the Figure 9.8. The Element RUS8A using the

Cartesian coordinate system for the stress modes contains

zero-energy deformation modes at _ _ 45 D . This is

verified by eigenvalue analysis of the stiffness matrix

generated at this angle. Furthermore, as the angle

approaches the value of 45 ° the element becomes more and

more flexible till it becomes unstable at e _ 45 °.

However, by the use of the natural coordinate system,

Element RUS8B, eliminates this unstable mode. Notice that

the variation of the result remains

30 ° .

Before the reader becomes too

negligible for _

astounded by above

results, several comforting observations are in order. In

most engineering problems, the reference coordinate chosen

coincide with the physical structural geometry which

eliminates the possibility of the complete structural

instability. To clarify, due to the boundary conditions

and the assembly with stable elements, the total structure

will be stable even when part of the mesh is parallel with
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45 ° line. Another strategy to eliminate the possibility

of the unstable mode is partially distorting the element

in the same plane of the expected angle _ • Following

result demonstrates this numerically.

TABLE 9.5. Tip deflection, Load Case II at _-45 ° •

ELEMENT

RUS8A

RUS8B

MESH2

-.599xi013

159

MESH3

-. 240,ti051

143

MESH4

132

129

The angle _ lies in the x-y plane, Figure 9.5. Since the

Mesh 4 is distorted in the x-y plane, the unstable mode is

partially dampened. Above analysis also holds for the

reduced integration technique. Same approach can be used

to employ elements with zero-energy deformation modes.

As a final note, for the quadratic elements, since

the stress assumption is complete to the linear order, no

instability will arise for the bending problem. Overall,

the remedy

reference

coordinate

coordinate

development.

to introduce invariance with respect to the

frame should be made by using the local

system. The problem of arbitrary reference

system should not enter into the element

Combat coordinates with coordinates.
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9.5 CIRCULAR HOLE IN AN INFINITE STRIP USING 8-NODE

SOLID ELEMENT

The model for the circular hole in an infinite strip

is shown in the Figure 9.9. The Figure 9.10 provide a

plane view of the four configurations of mesh using 8-node

solid elements. Although, due to the curved geometry of

the hole, higher order element should be used, this

problem nicely demonstrates the limitations of the hybrid

elements developed for general purpose applications.

Furthermore, this problem establishes the groundwork for

the discussion of the special purpose elements presented

in the next section.

The result from the displacement convergence study is

given in Figure 9.11. The stress distribution along x - 0

for the four mesh configurations are provided in Figures

9.12 to 9.15. The elements used in the analysis are the

Elements DS8 and RUS8A. Recall that RUS8A can model pure

bending exactly as demonstrated in the subsection 9.4.

Since the results from the Element RUS8B with stress

assumption in the natural coordinate system are very close

to the results from the Element RUS8A, these

omitted.

In the overall sense

results from Element DS8

dramatic. In the

results are

the difference between

and RUS8A are not

development of the 8-node

elements,

the

overly

solid

the assumed stress modes clearly show that the
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advantage of the hybrid 8-node over the assumed

displacement 8-node ks the bending behavior. In any other

type of mode excitation, the convergence of the 8-node

solids using either element will be similar. However,

note that this characteristic is purposely imposed in

order to construct a general purpose element.

In the stress distribution obtained, the results from

the assumed displacement element are actually little more

accurate then the result from the hybrid element. The

only way this can be explained is that the artificially

coupled terms inhence the accuracy for the class of

problems exemplified by the circular hole problem. From a

logical extension to the above conclusion, introducing

more descriptive modes will increase the accuracy for the

corresponding class of problems, i.e. special purpose.

Further discussion is reserved for the next section.
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9.6 HOLLOW SPHERE UNDER TEMPERATURE DISTRIBUTION

USING 20-NODE SOLID ELEMENT

The problem chosen to evaluate the 20-node solid

elements is the hollow sphere under temperature

distribution, Figure 9.16. Six element mesh is adequate

to study the relaxation and symmetry condition on the

cubic terms. Six diffenent stress assumptions are used

for direct comparison. Element used in this analysis are

listed below with comment for their choice.

ASSUMED DISPLACEMENT ELEMENT

DS20

HYBRID ELEMENTS

RS20A - Equilibrium relaxed for

all cubic stress modes.

Symmetry Maintained.

RS20B - Equilibrium relaxed for only (7_ =x 3, O'y =y3,

and (Yi =z 3 term.

Symmetry Maintained.

RS20C - Equilibrium imposed in unsymmetric fashion.

RS20D - Equilibrium relaxed for both quadratic and

cubic stress modes.

Symmetry Maintained.
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RS20E - Alternate stress modes used to complete the

stress assumption, 57 _ 's.

Equilibrium relaxed for

all cubic stress modes.

Symmetry Maintained.

RS20F - Also an alternate form, 54 0 So

Equilibrium relaxed for

all cubic stress modes.

Symmetry Maintained.

The analytical solution for the hollow sphere problem

is obtained from Timoshenko and Go.diet[18]. A comparison

of the radial displacement

Elements DS20 and RS20A is

results are both very accurate

analytical solution. Again

distribution obtained by

shown in Figure 9.17. The

when compared with the

for the tangental stress

distribution result, Figure 9.18,

accurate solutio ns.

curvature change is

distribution. Thus

both elements provide

This is expected since the rate of

slow for the tangental stress

the excitation of the higher order

stress modes are correspondingly small.

The radial stress distribution provide high enough

rate of curvature change to excite the higher order stress

modes in order to distinguish each element performance.

The Figure 9.19 compares the radial stress distributions

obtained from the assumed displacement element, DS20, and
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the hybrid element, RS20A. In general, a significant

disparity of results, exemplified in Figure 9.19, between

-7_-p and _M element will be observed for any problem

with stress distribution that has a high rate of curvature

change. In another words, when the quadratic stress modes

are excited disparity between the two formulation will

arise. Above remark

problem, linear mode

element.

The radial stress

is a simple extension of bending

excitation, using 8-node solid

distribution comparison between

hybrid elements with various other stress assumptions are

shown in Figures 9.20 to 9.23. The results indicate that

the equilibrium can be relaxed for all cubic stress modes

and the symmetry condition should be maintained. Also,

the elements RS20A, RS20E, and RS20F gave almost identical

stress distributions.

numerically supports

sections.

Overall, the hollow sphere problem

the discussions on the previous
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9.7 CANTILEVERED BEAM USING 20-NODE SOLID ELEMENTS

accomplished

distribution. The stress compatibility condition

be used to reduce the number of _ ' s to 69.

compared to 54 _ 's used for the Element RS20A.

In a recent article by Spilker and Singh[19] , a

hybrid element with complete cubic assumed stress

distribution satisfying both equilibrium and compatibility

conditions is presented. This element is named RS20G

(refer to Appendix B) • An example given is a cantilevered

beam problem with distributed end shear loading. The

normal and shear stress distribution results are given in

Figures 9.24 and 9.25, respectively. The results from all

three elements, DS20, RS20A, and RS20G, are comparable as

expected from previous beam bending analysis.

The purpose for constructing the Element RS20G, by

Spilker and Singh, is to implement element invariance with

respect to the reference coordinate. The invariance is

by expanding the stress into full cubic

had to

This is

Under a close examination, several severe limitations

on the Element RS20G restrict its applicability. First,

the element is limited to isotropic material only. Also,

excessive computational cost prohibit practical

application. Uncoupled stress formulation cannot be used

to reduce cost since 51 constraints are necessary to

reduce full cubic, 120 _' s, to 69 _ ' s. A lesson learned

from this example is to use local coordinate system to

achieve element invariance.
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9.8 HU-WASHIZU ELEMENT EVALUATION

In order to numerically compare the difference in the

solution between _ and 7_MW when the stress-strain

relation is relaxed, two previous problems, given in the

subsections 9.6 and 9.7, are

matrix. The elements used are

RS20A and HS20A (Appendix B).

solved using similar P

20-node solid elements

For the cantilevered beam problem, the tip deflection

results are given in Table 9.6.

TABLE 9.6. Tip deflection of cantilevered beam.

# of Elements

in the mesh

1

2

4

7_? , DS20

-.956,10*

-1.08

-i.i0

_-_, RS20A

-I. 05 "i0

-1.09

-i.ii

7_MW, HS20A

-1.05.10

-1.09

-1.11

i

analytical = -i. 132xi0"* (Transverse shear included)

Also the shear stress results between RS20A and HS20A are

identical up to 3 digits. Figure 9.26 demonstrates this

graphically. The reason the results between RS20A and

HS20A are similar is that the cantilevered beam problem

has a linear distribution in the normal stress and a

constant distribution in the shear stress. In comparison

of the stress assumptions for these two elements, Appendix
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B, showes that for the constant and linear terms, the

equivalence conditions are identically satisfied.

The previous discussion on the Hu-Washizu formulation

asserted that the stress-strain relation can only be

relaxed for the cubic "nonsense" stress modes. To

illustrate the consequence when the stress-strain relation

is also relaxed for the quadratic modes, the hollow sphere

problem is solved using Element HS20A° Recall that the

condition required to satisfy the stress-strain relation

constrains the _'s to be equal. The Figure 9.27 clearly

demonstrates the difference between the two formulations.

Since the stress-strain relation for the quadratic terms

for Element HS20A are not satisfied, the result is poor.
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9.9 CPU TIME FOR STIFFNESS MATRIX GENERATION OF

8-NODE SOLID ELEMENTS

To justify the use of the hybrid elements for

practical industrial application, normalized CPU time for

stiffness matrix generation of 8-node solid elements are

provided in Table 9.7.

TABLE 9.7. Normalized CPU time for stiffness matrix

generation of 8-node solid elements.

DS8 - Assumed Displacement Method

RS8A - Original Hybrid Stress Method

RUS8A - Uncoupled Stress Method

RUS8C - Uncoupled Stress Method

1

1.62

0.96

0.60

Note that all three

RUS8C, provide exact pure bending behavior.

the flexibility allowed in the uncoupled

the economic roadblock on the hybrid

easily bypassed.

hybrid elements, RS8A, RUS8A, and

Thus by using

stress method,

elements can be
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10. SPECIAL PURPOSE ELEMENTS

the general purpose

restricted class of

convergence using the

The special purpose elements, as differentiated from

elements, are tailored for a

problems.

special

significantly increased. The

discussion is to direct

purpose elements.

By restriction, the

purpose elements can be

aim of the present

future research in the special

In the previous sections, much emphasis is placed on

the examination of both displacement and stress modes in

conjunction. The resulting combinations that satisfy the

governing equations establish the accuracy of each

element. If the exact mode is included in the assumed

modes, only a single element is necessary to obtain the

exact solution. If otherwise, the convergence depends on

the ability of a linear combination of modes to

approximate the solution.

Inevitably, the next generation of elements will

involve a joint effort of theoretical solid mechanics and

finite element strategy. Expanding, as Wilson attempted

to purposely insert bending modes, the modes obtained from

analytical means will be implemented into the assumed

modes. Observe that the displacement and stress modes

obtained analytically for a sepecific problem satisfy the

governing equations a priori. Furthermore, for a similar

class of problems, this mode will be highly excited.
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Overall, above technique simulates the Eigenmode expansion

and series expansion used for many years to solve

structural problems for the finite element method.

The desirability is established and thus the next

question is the feasibility. To begin with, the use of

the hybrid formulation provides a convenient method to

implement any desired modes. By examining, step by step,

the construction of hybrid element, the only roadblock

present is the numerical integration of the elementary

functions such as

functions. A brute

term analytically.

algebra should be

Other solutions will be found as the research

the development of special purpose elements.

the trigonometric and exponential

force solution is integrating each

A tremendous amount of necessary

done using an algebraic manipulator.

evolve in
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11. CONCLUSION

The key

formulation is to

assumed displacement

to unlocking the mystery of the Hybrid stress

understand the interaction of the

and stress distribution. Using the

isoparametric

displacement, a

obtained. In

method as the basis for the assumed

consistent stress distribution can be

practical engineering applications, each

element is employed to "finite" domain.

Therefore, the mathematical convergence, derived

on the assumption of the process, have only

restricted practicality, bridge to fill the gap

between mathematical abstraction and practical reality of

finite element method is the application of the physics

cover a

proofs on

limiting

The

involved in continuum mechanics. In this context, all of

the painstaking development of analytical solution can be

applied in the finite element method. Recognize that the

finite element method is a numerical method operating on

the parameters provided through the assumed variable

distributions.

In the discussion of general purpose elements, the

Statement of Equivalence convey that if the assumed

displacement, obtained through isoparametric formulation,

is complete to order P, then the Hybrid and the assumed

displacement element stress accuracy is equivalent to

order (P-I). The actual superiority of the hybrid element

will be visible for the problems requiring the stress
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modes represented in the order P. This is demonstrated by

constant stress problem verses cantilever beam problem for

8-node solid element (P-I).

In sum, the most attractive attribute of the hybrid

stress formulation has not been yet fully exploited. The

flexibility to easily include assumed modes obtained

through analytical methods differentiates hybrid elements

from the assumed displacement elements. Always remember

that flexibility is an attribute when applied with

understanding •
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s ____-_

FIGURE 6.1 Possible deflection mode for 8-node solid

requiring a "nonsense" stress term (in this

case O'z= xy) to prevent such a zero-energy

deformation mode [15].
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E = 107
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FIGURE 9.1 Cantilever beam using single 4-node plane
stress element.
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ro=12
r.=lO
L

F1 : 270.3

F2 = 56.3

F3 = 326.6

Total Moment : 600

MESH l = 16 DOF ( l element)

)IESH 2 = 26 ( 2 elements)

MESH 3 = 36 ( 3 elements)

MESH 4 = 46 ( 4 elements)

MESH 5 = 56 ( 5 elements)

FIGURE 9.2 Curved cantilevered beam using 8-node plane
stress elements.
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_) u=O

u:w:O

U=V=W= 0
E = 1500

PI = lO00

PII = 150

= 0.25

FIGURE 9.5 Cantilever beam using 8-node solid elements.
(Single element mesh - MESH l)
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FIGURE 9.6 Two element mesh arrangements.
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FIGURE 9.9 Circu]ar hole in an infinite strip.
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FIGURE9.10 Plane view of the meshconfigurations.

93



!
I,!

I I I I I I

I

u'_

I

I
I
I

I
I

I

I

I
I

l
I

I

l

I

l
I

I

I I

I

I

_J
..-H

I I

SIN3N3OVqaSI(]

_C
oO

cO

0<1

I

C_
!

1

CO

C_3

,,a"-

C%1

ISI

O
C_

I,

1,1
I,!

-t-

1.1.1

M'I

s-

u

O
u

c

E

u

°_

r_

_J

u.

94



I ! ! ! I

ISI

n

x

• e'-
0

C
1.1"3 o

,=,1

_ °P.,

• L

_J

o

w

95



i I i i i

o

o

Q

I

I_J

II
x

o

e'-
0

0_

mf_,

L

_=_

q,l

c_
LI.I

IJ.

96



! l ! I I

o

• • Q • •

I I

>.-

,4

II
x

_,_
e"
0

C
O

o_

r_

f..

S,..
4J

L_m

97



,d.=

0

I ! ! ! I

w

II
x

e-,
o

c-
O

L

W

r,_

98



Z

x

6-ELEMENT MESH

TEMPERATURE DISTRIBUTION
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FIGURE 9.16 Hollow sphere under temperature distribution

using 20-node solid elements.
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APPENDIX A

TABLE AI.

_X _z

E y o_

Ez _

Strain modes from assumed displacement modes.

_'sY or 7 z ._i,X 2o_,,xy 2.:_,=xzl _,_,y¢

"3"xy o_. o(a

o( 7 X oft2 X z

_zo Z4_

2._'aoxyz

o<zs Y

:Z _s, xy

y'- °<_xx:'Y "rsq Y_ :_"{4, x>,z

_'_'7 xy

_r7 7Z
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" EX

Ey

Ez

TABLE AI.

a_'$zxay

Continued.

_'_I' X=× 2'XcoXYZ.

"_xy

o,,sr x"z _sq xyz

_'_.s_ xyz _se YzZ

_c_ Z=x

_4re Z'_X

c_'_

_'_3 yz

o(i 6 Z 2"

i

o(5=.xz 2. _j$-X_'
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i

i
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TABLE A2. After elimination of the Artificial Coupling.

CONS]r,

Z

XY

YZ

XZ

/_?

l_t S

I_33 /_34

/_s 7

/'_sc

xZy

XZ z

xzZ
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TABLE A3.

CONS/'.

×

Y
Z

×Y

¥Z

XZ.

X z

y_
Z 2

XYZ

y_yZ

Xzy

yZ z

yZz

XZ 2

x_z

;K3

,i,3
Z 3

E( uilibrium applied.

_y

/Sct

O_y

AIo

(_y_,

/t_jl

(_'ZX

f_s fJs

_,, -/__-t_-_o-@
f,s "f-"'_"
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When the Table A4 is compared to the Table AI, the

stress modes _s0' _Sz' and _j_ are not present. Thus these

modes are due to the process of decoupling the stress modes.

Furthermore, the presence of p,_, _4a' and _ are redundant

and should be removed. In the final form of the stress

assumption, Table A4, the equilibrium condition is relaxed

for the cubic teems. Also foe convenience, the numbering

scheme has been changed. The x 3, y3 , and z3 terms are

chosen to eliminate the additional zero-energy deformation

modes.
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TABLE A4.

CONST.

X

Y

Z

XY

YZ

XZ

!

'#14. -#21

7

/_22.

Final form with equi

_y

ibrium for cubic terms relaxed.

#4

J3

_,_ _,_ #,:

f,= /e,_ #,,

/_ _,

/_3Y

yz z

yZz

xz'

XzZ

X 3

y3 _,_,._

Z 3

y2 #zS"

Z_ #_

X,y.z

Xzy

3 o #$_

3 I

_o /_,

#.,-,
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APPENDIX B. ELEMENT NOMENCLATURE

--- ASSUMED DISPLACEMENT FORMULATION ---

D - Assumed Displacement

P - Plane Stress

S - Solid

- Number of Nodes

DP4 - 4-Node Plane Stress Element

DP8 - 8-Node Plane Stress Element

DS8 - 8-Node Solid Element

DS20 - 20-Node Solid Element

--- HYBRID FORMULATION ---

a
. - 7l'_w

U - Uncouple (Blank for Coupled)

P - Plane Stress

S - Solid

- Number of Nodes

A,B,C,... Assumed Stress Version
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4-Node Plane Stress Elements

% -/s 3

RP4B
_x =jR,

RP4C
o-,_=f, ,.#=,y.F, x
o'7---#. • ,_._x.p_y
%: ,8_- _ x - ,B,y

=#,-#,x+#,y

o'y : #,.#,x -_#,y
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CONST.

x,

Y

XY

/_|

I_1.%

X _ /_
J

y2

/_,,

-/I.z

!

x3 G
i

y3

8-Node Plane Stress

Elements

RP8A - Delete circled terms.

(Equation 8.22)

RPBB - All terms included.

C.ONST.

X

Y

xY

X _

y3

Cy _Y

/9,,
ii i

/,'37

_3

_! _,o

I19

RPSC - Alternate version

of RP8A.



CON._T.

¥

XY

X z.

,8,

:zf_

yZ ,_,, _,,o

Xy 2" BA',._ 3,_',,

×_ y 3,8,_ 3,a,5-

/_J 3

(T_y

-_',,

- -_/(_l 7..

RP8D - Complete Cubic

Equ iIibrium and
Compati biIity imposer

(Ref. [16])

CoNs'r.:

×

m

i

y_
i m

y3

_y
i

_c
|

_'7

|

i

C_xy

_,_
RPSE - Stress assumption

to only suppress kinematic

modes without regards to

equilibrium.
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RP8F - Complete quadratic, ignores equilibrium.

CONST.: /_l /_'.-./ /_i_

XY _'4 ,a,,, #,_

x _ /_ #,, _,_

Xy:

x'Y

X_

y'

T21



8-Node Solid Hybrid Elements

Equilibrium condition is

otherwise indicated.

fully satisfied unless

RS8A

+#,,,(>,

RUS8A- 9 Constraints on _'s from Equilibrium Condition.

* Note that RS8A and RUS8A are equivalent element with different

programming algorythm introduced in the uncoupled stress formulation.
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RUS8B - 9 Constraints.

*RUS8B is equivalent to RUS8A for rectangular elements.

RUS8C - 3 Constraints.

*RUS8C - Equilibrium relaxed for quadratic terms.
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RUS8D - 9 Constraints.

RUS8E - 9 Constraints.

%
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20-Node

CoNsn

Solid Hybrid Elements

_Y O'y_

Z

×Y

YZ

XZ, _24

_25

_9

X _

y_

Z _

XYZ

-/,7 "fflq

t_33

/_s 5"

i

[-@]

!DELETE:

yZz

XZ z

XZZ

X _

{&,-_h
a Z'/

0-[ ]

0

!

(9+),

I

RS20A

RS20B

none RS20C

0",-[ ]',<) RS20D

125



Y

Cry

Z

×Y

/9,,

yZz

XZ z

XzZ

X 3

¥'3

Z 3

/6'$3

iii •

J

DELETE:
J,

RS20Enone

RS20F
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RS20G (Ref. [19])

o-.., = _, +_,x + _3y +_,z + I/2(y 2- x_)_:_ + I/2,_, [-y 2 -,_z 2 +(I +,_)z 2_,,

+ I/2_ (1 - _.)[-(I + _.2)y2 + (I - _ 2)x 2_2, + I/(I - A)[.y2- (I - _)z2_

+ 1/_ [y 2_ z 21B_6+ 1/_ (1 - ,_5)[(1 + _ 3)),2_ (1 -,_ 2)z _lB=7 + ,e2.xy + ,e2.xz + t33oy:

+ .Ss3[-x 3/3 + (1 + _,)y2x] + _61[-x3/3 + (X + 1)y2x] +-_,3[Y 3-3z2Y]

+.8,4 [z' + 3y2z (7_2-XA-1+ 1)] + _s6[-2xyz] +/363[-2xYZ]+[3s_/2[-x2Y + : 2y]

+ Bss[-z_y+z2y]+ Bs2/2[-x2z+y2z]+ ,62[-x'z- y 2z _] + B,,.[-3,_y.'x ]

+ ,,,[--3Ay:x]+ _,s[-y:X + ::z]+ , s1[y2z _---A'--'_]+ ,,,[3.tY:Z]

: . / A 2 +

2
• x 1 2

_. = _s + _ + _Y + _,z + 1/2(x =- Y_)_:= + _'_ +__ - (1 - _)),_3_=,

+ .B..[z _ - 3x:z ] + .Bs4[-2xyz ] + ,B.,[-2xyz] + ,B,,s[-3 Xx_)']+ .Bso[-3,,t.z:ty]

....
o'.=/_,+/_iox+/_.y + _z + _= +/_=_y=- I/2(.B..+ _2,):_+ _w._O'

÷,.,,.+,,,(,,-:+,,]+_r,÷,+.e,xz +.e,y: [ . ,,-t _,,oLy x y... ,__1 '

z 3

- T +('_ + 1)'Y_z] +'e_[-2xyz]
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CON$_

X

Y

Z

×Y

i 14

fts

×z. ?, ?_o

X z

y2

21

_9.-/

/_27

_3

_y _YZ.

_q

O"z_

/_53

Z 3

XZ z

xZz

11

X,y z /_s-,

xZY 73_

TZ z

HS20A ]

XYZ
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